Loading a Network¶
RISK includes dedicated loader functions for multiple network formats. Each returns a standardized networkx
graph object for downstream analysis.
Supported Input Formats¶
Format | Function |
---|---|
.cys |
load_network_cytoscape() |
.cyjs |
load_network_cyjs() |
.gpickle |
load_network_gpickle() |
NetworkX |
load_network_networkx() |
Each loader supports optional spherical projection, depth tuning, and node filtering.
Cytoscape .cys
Files¶
Use this format if you've exported or styled your network in Cytoscape.
network = risk.load_network_cytoscape(
filepath="./data/cytoscape/michaelis_2023.cys",
source_label="source",
target_label="target",
view_name="",
compute_sphere=True,
surface_depth=0.1,
)
source_label
,target_label
: Column names for edgesview_name
: Load a specific layout (optional)compute_sphere
: Project layout onto a 3D spheresurface_depth
: Controls visual node "depth"
Cytoscape JSON (.cyjs
) Files¶
Structured network files exported from Cytoscape Web or JS-based tools.
network = risk.load_network_cyjs(
filepath="./data/cyjs/michaelis_2023.cyjs",
source_label="source",
target_label="target",
compute_sphere=True,
surface_depth=0.1,
min_edges_per_node=0,
)
min_edges_per_node
: Filters out sparsely connected nodes
GPickle (.gpickle
) Files¶
Fast, native Python serialization of NetworkX graphs.
network = risk.load_network_gpickle(
filepath="./data/gpickle/michaelis_2023.gpickle",
compute_sphere=True,
surface_depth=0.1,
min_edges_per_node=0,
)
Use this for reproducibility and performance when working with saved graphs.
NetworkX Graphs¶
Load an in-memory NetworkX graph directly.
network = risk.load_network_networkx(
network=network,
compute_sphere=True,
surface_depth=0.1,
min_edges_per_node=0,
)
Useful if you've already constructed a graph using other tools or workflows.
Spherical Projection and Depth¶
All formats support these shared preprocessing parameters:
compute_sphere=True
: Projects nodes from 2D to a 3D spherical layout (Mercator-inspired)surface_depth
: Push or pull nodes inward/outward to reflect density or importancemin_edges_per_node
: Removes low-degree noise
These features improve layout clarity and biological interpretability.
Next Step¶
Proceed to 3. Annotation to map biological terms onto network nodes.